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A charged particle of mass M on a ring of radius R is coupled to various environments. With Monte-Carlo methods we 
evaluate the curvature of the Aharonov-Bohm oscillations. For Caldeira-Legget bath of oscillators we find the origin of big 
descepancies between results of different groups. For a charged particle in a dirty metal environment we find a quantum 
phase transition at a critical Rc. At low temperatures T the curvature has the form 1/M*R2 with an R independent M* > M in 
the R > Rc phase, while M* rapidly approached M in the R < Rc phase. The approach to T = 0 defines diverging length 
scales ∼ T− η  with  η ≈1 and  η ≈1⁄4 in the large and small R phases, respectively. Our preliminary results for a particle with 
electric dipole in a dirty metal environment for large R and low temperatures show an R independent saturation of M* > M as 
in a charged particle case. 
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1. Introduction and theoretical model 
 

The problem of interference in presence of a 
dissipative environment is fundamental for a variety of 
experimental systems. Interference has been monitored by 
Aharonov-Bohm (AB) oscillations in mesoscopic rings [1-
3] or in quantum Hall edge states [4] in presence of noise 
from gates or other metal surfaces . Cold atoms trapped by 
an atom chip are sensitive to the noise produced by the 
chip [5–7]. In particular giant Rydberg atoms are studied[ 
8] whose huge electric dipole is highly susceptible to such 
noise. An efficient tool for monitoring the effect of the 
environment, as proposed by Guinea [9], is to find the AB 
oscillation amplitude as function of the radius R of the 
ring. This amplitude is measured by the curvature [10–12] 
of the ground state energy E0 at external flux φx = 0, i.e. 

1/M*R2 = ∂2E0/∂φx 2⏐0, defining an effective mass M*. 
For free particles of mass M this curvature is the mean 

level spacing 1/MR2. The particle can be coupled to a 
variety of environments, with three systems of particular 
interest: (i) a Caledeira-Legget (CL) bath [9], (ii) a 
charged particle in a dirty metal environment [9,13] and 
(iii) a particle with an electric dipole in a dirty metal 
environment [14]. System (i) has been studied with a large 
variety of methods, all showing that the AB amplitude is 
exponentially suppressed  ∼e−π2γR2/, i.e. a new length scale 
∼ 1/ γ  is generated by the coupling to the environment 
[9]. System (ii) has been studied by renormalization group 
(RG) methods [9,15] finding M*∼Rμ with a small μ, a 
Monte Carlo (MC) numerical method gave [13] μ = 1.8, 
while a variational scheme [14] gave μ = 0. System (iii) 
was also studied within the variational scheme14, leading 
to μ = 0 as well. 

In the present work we use MC methods to analyze 
mostly system (ii). We find that the energy cutoff used in a 
previous study [13] is insufficient and a higher cutoff 

ωc is needed. The low T data shows a quantum critical 
point at Rc at which 1/MR2 ≈ωc.  For all R we find that M* 
is R independent, i.e. μ = 0. At R > Rc we find M* > M 
and that even the finite T data (at T <ωc ) is determined by 
this M*; at R < Rc we find M* = M. 

  The approach to T = 0 defines diverging length 
scales ∼T−η with  η≈ 1 and η≈ 1⁄4 in the large and small R 
phases, respectively. A related study shows that similar 
scales correspond to a dephasing process [16]. 

  The time dependent angular position θm(τ) of a 
particle on the ring has in general a winding number m so 
that θm(τ)  = θ(τ)  + 2πmTτ where θ(0) = θ(1/T ) has 
periodic boundary condition and T is the temperature. In 
presence of an external flux φx (in units of the flux 
quantum hc/e) the partition sum has the form 
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where the effect of environments, in each of the 3 cases, is 
[9,13,14] 
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Case (i) is the CL system where  is the coupling to a 
harmonic oscillator bath; case (ii) is a charge coupled to a 
dirty metal where kF is the Fermi wave vector, l is the 
mean free path in the metal, and  r = R/l; case (iii) is an 
electric dipole of strength p coupled to a dirty metal. 

We are interested in the effect of the environment on 
particle. As a measure of this visibility we consider the 
curvature of the Aharonov-Bohm oscillations the visibility 
of quantum interference as measured by the 
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where F = −T lnZ. It is useful to consider a free particle           
α= 0, for which 
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where t = 2MR2T . This identifies the thermal length              
LT ~ 1/ MT  

In the interacting system a high energy cutoff can be 
identified by considering τ→τ′ (corresponding to high 
frequencies ω) so that expansion of K(z) and Fourier 
transform yield 
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The cutoff ωc is identified when the kinetic ∼ ω2 and∼ 

|ω| interaction terms are comparable, i.e. 
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This ωc replaces a possibly higher environment cutoff, 

since significant renormalizations start only below ωc 
where the linear |ω| dispersion leads to lnω terms in 
perturbation theory and to the need for either RG 
treatment, or an equivalent variational scheme14. Note that 
K′′(0) = 1⁄2 ; r2; 3r2 in the 3 models above, hence 

ωc = πγ/M in case (i), while ωc ∼α</Ml2 in cases (ii) 
and (iii). 

 

2. Monte Carlo simulations 
 

For the MC numerical method we need to discretize 
the time axis into a Trotter number NT of segments, i.e. the 
time interval of each segment is Δτ=1/(TNT ). The discrete 
action is 
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The 1⁄2αK′′(0) term comes from the n = n′ interaction 

term by expanding K(z) around z = 0. A key issue in our 
MC study is the choice of energy cutoff 1/Δτ and the 
corresponding Trotter number NT = 1/(TΔτ). The correct 
choice is such that the free kinetic term dominates over the 
single n = n′ interaction term, i.e.  NT ≥ωc/T; this 
corresponds to an energy cutoff of ωc, as anticipated 
above. A previous MC study on the charge problem13 has 
chosen NT = 2/(MR2T ), i.e. an energy cutoff of ≈ 1/MR2. 
For large r this cutoff is much smaller than ωc and is 
therefore insufficient. Eqs. (1,3) identify 1/M*(T )R2 = 
2π2T (m2)|φx=0 so that the MC evaluates the fluctuations 
in winding number (m2) at external flux φx = 0. The 
procedure is to start with some m, update θn at a time 
position n to θn′ and accept or reject the change according 
to the MC rule with probability exp[S(m){θn}−S(m){θ′n}]. 
After the NT points are successively updated, the winding 
number is shifted to m′ = m ±1 and the shift is accepted or 
rejected with the probability exp[S(m){θn} − S(m′){θn}]. 

An update of θn is done randomly with a step size that 
produces an acceptance ratio of about 50%11.  

 
A. CL model 
 
We start to present our data by showing in Fig. 1 the 

dependence of M/M* on the number of iterations for the 
CL model with t = 0.01, γ = 0.5. To estimate errors we 
evaluate the correlation function between different paths 
for a given run and deduce a correlation length ξ. We 
discard the initial 105 MC iterations and then evaluate the 
standard deviation σ of the average data; the error is then17 
σ 12 +ξ . The reason for large errors shown in Fig. 1 
and the necessity to discard a very large number of initial 
iterations is a huge correlation length (typically, a few 
thousand units), and we, therefore, need a few millions of 
iterations in order to decrease the standard deviation of the 
average data. We have checked a few points of the CL 
model at low temperatures for different  γ and found a 
good agreement with the results presented in11. 

Extrapolation to zero temperature for the CL model 
with γ= 0.5 is shown in Fig. 2. 
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B. A charged particle coupled with a dirty metal 
 

We now present results for the main subject of our 
research: a charged particle coupled with a dirty metal. 

The inset in Fig. 3 shows the NT dependence of M/M* 
for the charge problem with r = 5, t = 0.2,  α= 0.019. 

The choice13 NT = 2/(MR2T ) = 0.8 is clearly 
insufficient; saturation sets in around NT ≈ 100 which is of 
order of ωc/T = 30. In the following we choose our NT , in 
the charge problem, to be NT= 40αr2/t =10ωc/(πT ), i.e. NT 
= 95 for the inset parameters. For the dipole case, where 
ωc is 3 times higher we choose 

NT = 120αr2/t = 10ωc /(πT ). Fig. 3 shows that for r = 
5, t = 0.2, α = 0.02 (red squares) saturation indeed sets in 
near NT = 300. 

This high value of NT restricts realistic MC studies. 
We have noticed, however, that this high NT is necessary 
only in the vicinity of n = n′ in the double sum of (7), 
where the summand is rapidly varying. Hence the double 
sum is taken over all points only in vicinity of the 
singularity, i.e. for |n − n′| < 0.03NT . 

   For points that are further separated we coarse grain 
the sum with fewer points, corresponding to an effective 
NT = 1/t. 
 

 
Fig. 1. Dependence of the effective mass on the number of 

iteractions for CL model with t=0.01 , γ=0.5 
 
 

The results of this procedure are shown by the green 
circles in Fig. 3, and are in agreement with the full 
calculation that includes all NT points.  
 

 
 

Fig. 2. Extapolation to zero temperature for the CL model with  
γ= 0.5. 

 

 
Fig. 3. Trotter number dependence of the effective mass 
for the dipole case with r = 5, t = 0.2, α= 0.02, using (i) 
all NT points in the double sum Eq. (7) – red squares, (ii) 
For points |n − n′| > 0.03NT sum is coarse grained (see 
text) – green circles, (iii) the whole sum is coarse grained 
– blue  triangles.  Inset:  The   charge   case   with  r = 5,                 
   t = 0.2, α = 0.019 using all NT points in the ums 

 
 
 

The double sum has then ≈ 1/2 10−3N2
T + 1/2 t−2 

terms, much less then the 1/2N2
T terms of the full 

calculation. We also show data where the double sum is 
coarse grained at all points, including those near n = n′, by 
blue triangles. Here the double sum has only 1/2 t−2 terms; 
this data has significant deviations from the full 
calculation. Before we present main results of this 
research, we wish to stress that there are two independent 
large parameters in the MC procedure: a Trotter number 
NT and a number of iterations; the convergence of the 
results should therefore be checked separately for each of 
those two parameters. 

We proceed to present our results on M/M*(T ). At 
low temperatures we evaluate (m2), and the average 
involves typically many values of m. To estimate errors 
we evaluate the correlation function for a given run and 
deduce a correlation length ξ. We discard the initial 104 
MC iterations and then evaluate the standard deviation σ 

of the average data; the error is then17 σ 12 +ξ . 

We typically find a short correlation length of a few 
units and we run till an error of ∼ 2% is achieved; the 
number of iterations is then ≈ (1 − 2) ⋅ 105, where each 
iteration is an update of NT values of the θn. At high 
temperatures t > 1, where M/M*≤ 10−3, the probability of 
m≠  0 becomes extremely small so that just m = ±1 
determine the outcome11. Hence we evaluate (m2) = 
2(e 01 SS − )0, averaging with e− 0S . In this method we 
find a rather long correlation length of 103, yet there is no 
need to vary m and a 2% accuracy can be achieved after         
≈ (1 − 2) ⋅105 iterations. 
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Fig. 4. AB curvature as function of reduced temperature 
with α= 0.019. All r ≥ 3 values fit the renormalized form 
0.9f(t/0.9) – the lower curve. At r ≤ 1 the data 
approaches  f(t)  of  a  free  particles – the  upper  curve. 

 
 

In Fig.4 we show our data at low temperatures, t < 
0.3. We discuss first the data for r ≥ 3, where we observe 
saturation at M/M* ≈ 0.9, independent of  r. The possible 
dependence of M*(r) at T = 0 of interest as a means of 
monitoring anomalies in the ground state9,13. Previous 
studies proposed M*∼rμ with either 9,15 a small μ or13    μ 
=1.8 for αr > 1 or14 μ = 0. Our MC is consistent with the μ 
= 0 prediction14, though the numerics cannot exclude a 
small μ ≤0.05. The μ = 0 result shows that the AB 
curvature ∼ 1/r2 is the same as for free particles, i.e. the 
ground state has no anomaly and is fully described by an r 
independent M*. Furthermore, Fig. 4 shows that M*� 
determines the finite temperature behavior, as long as T < 
ωc. Thus if we replace M→M*= M/0.9 in Eq. (4) we 
obtain the lower curve 0.9f(t/0.9) in Fig. 2 which is a good 
fit to the data. The thermal length is then LT∼1 TM * . 
We turn now to discuss the r ≤ 1 data in Fig. 4. We find 
here that the data at low t saturates at M* =M, i.e. no 
renormalization at all. The transition from M*= M/0.9 to 
M* = M at low T is at rc ≈ 2. We propose that this 
transition occurs when the free particle level spacing 
1/2MR2 is comparable with ωc, leading to rc ≈ 1/ πα4  ≈ 
2. At r < rc the bath is not effective in coupling excited 
states of the particle and an approach to M*=M is 
expected. However, the sharp transition between the two 
regimes is surprising. 

 
Fig. 5. AB curvature including high temperatures with 
α=0.019. All data fall in between the upper line f(t) and  
                         the lower line 0.9f(t/0.9). 

In Fig. 5 we show our r ≥ 3 data up to  t=2. The data 
falls in between two lines: 0.9f(t/0.9) and f(t). The lower 
curve 0.9f(t/0.9) corresponds to the renormalized system 
and fits data with T ϕ<<  ωc, i.e. t << 4παr2. For a fixed t 
as r decreases T approaches ωc and the data approaches the 
upper curve which is the unrenormalized free particle form 
f(t). 
 

 
Fig. 6. Scaling of the x variable in M/M*= f(tx)/x. Note 

the distinct scaling forms of the large and small r phases. 
 
 

We therefore parameterize our data by a function x(r, 
t) such that M/M* =f(tx)/x. In the r ≥ rc phase we expect 
x(r, t) to vary between x = 1 at high t and 

x = 1/0.9 at low t, while for r ≤ rc we expect the 
opposite trend as t varies. Fig. 6 shows that x(r, t) has a 
scaling form that is markedly distinct in the two phases. 

In the r > rc phase the scaling variable is t/r while in 
the in the r < rc it is r2t. The scaling for r ≥ rc is consistent 
with a high t expansion13 that yields x = 1 + 4αr/(πt), 
though we have not tested scaling with α. Temperature 
affects both renormalizations: due to the bath, controlled 
by T/ωc, and due to the free particle spectra, controlled by 
t= 2MR2T via Eq.(4). To focus on the bath 
renormalization, it is useful to study scaling of r with t 
fixed, rather than with T fixed. In both phases, increasing r 
at a fixed t leads to a larger M�*, which is expected since 
more degrees of freedom become coupled. However, since 
the scaling variables are t/r and r2t in the two phases, a 
remarkable result follows that the t dependence is 
opposite. In particular, at T = 0 the renormalization 
parameter x is maximal for r > rc while it is minimal (x = 
1) for r < rc. We can interpret rc as an unstable fixed point, 
with RG flow for r > rc to r → ∞ leading to fully 
renormalized M*, while for 

r < rc the flow is to r → 0 leading to an 
unrenormalized M* = M at T = 0. Recalling that t = 
2MR2T , we conclude that the data shows length scales 

rM∼T−ηwith η≈ 1 and η≈ 
4
1

 in the large and small r 

phases, respectively. At scales r > rM the system 
approaches its T= 0 fixed point, which depends on the 
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initial r. Similar length scales, with the same exponents as 
above, were recently identified as dephasing lengths16. 

 
C. A dipole coupled with a dirty metal 
 
Finally, we present preliminary data for a third model: 

a particle wih an electric dipole coupled with a dirty metal 
environment. As has been mentioned above we need a 
Trotter number NT 3 times higher than for a corresponding 
value of α in a charged particle case(see 

Fig. 3). Fig. 7 represents results for large R and low 
temperatures for a model with α= 0.02. It shows an R 
independent saturation of M* > M as in a charged particle 
case. 
 

 
Fig. 7. Dependence of the effective mass on the 
temperature for a dipole model with α= 0.02. 

 
 

3. Conclusion 
 

We summarize but noting that we have found out the 
reason for large errors in the CL model: a huge correlation 
radius for successive paths makes it necessary to use a 
very large number of iterations. For a charged particle 
model Iwe have found an unexpected phase transition 
between two phases of model (ii) with distinct T 
dependence and renormalization properties. In both phases 
the ground state corresponds to an R independent M* 
while the approach to this ground state is via distinct 
scaling laws. We have identified the exponents for the 

length scales as ∼T−η with η ≈ 1 and η≈ 
4
1

 in the two 

phases. We have also found that in both phases there 
appears a thermal length with a critical exponent η≈ 1/2, 
which is the remainder of the free particle behavior. We 
speculate that this last exponent can account for the 
experimental data observed in?. More data for larger 
values of the coupling constant α is necessary in order to 
clarify dependence of the critical radius rc. As for a dipole 

model, our preliminary results resemble the corresponding 
results for a charged particle model. 
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