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Effect of dissipative environments on Aharonov-Bohm
oscillations of a particle

V. KAGALOVSKY" B. HOROVITZ*
Sami Shamoon College of Engineering, Beer-Sheva, 84100 Israel and
“Department of Physics, Ben Gurion university, Beer Sheva 84105 Israel

A charged particle of mass M on a ring of radius R is coupled to various environments. With Monte-Carlo methods we
evaluate the curvature of the Aharonov-Bohm oscillations. For Caldeira-Legget bath of oscillators we find the origin of big
descepancies between results of different groups. For a charged particle in a dirty metal environment we find a quantum
phase transition at a critical Rc. At low temperatures T the curvature has the form 1/M R? with an R independent M > M in
the R > R; phase, while M rapidly approached M in the R < R; phase. The approach to T = 0 defines diverging length
scales ~ T-" with n =1 and n =14 in the large and small R phases, respectively. Our preliminary results for a particle with
electric dipole in a dirty metal environment for large R and low temperatures show an R independent saturation of M > M as

in a charged particle case.
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1. Introduction and theoretical model

The problem of interference in presence of a
dissipative environment is fundamental for a variety of
experimental systems. Interference has been monitored by
Aharonov-Bohm (AB) oscillations in mesoscopic rings [1-
3] or in quantum Hall edge states [4] in presence of noise
from gates or other metal surfaces . Cold atoms trapped by
an atom chip are sensitive to the noise produced by the
chip [5-7]. In particular giant Rydberg atoms are studied[
8] whose huge electric dipole is highly susceptible to such
noise. An efficient tool for monitoring the effect of the
environment, as proposed by Guinea [9], is to find the AB
oscillation amplitude as function of the radius R of the
ring. This amplitude is measured by the curvature [10—12]
of the ground state energy E at external flux ¢, =0, i.e.

1/M*R? = 82E0/6¢x 2o defining an effective mass M.

For free particles of mass M this curvature is the mean
level spacing 1/MR?. The particle can be coupled to a
variety of environments, with three systems of particular
interest: (i) a Caledeira-Legget (CL) bath [9], (ii) a
charged particle in a dirty metal environment [9,13] and
(iii) a particle with an electric dipole in a dirty metal
environment [14]. System (i) has been studied with a large
variety of methods, all showing that the AB amplitude is
exponentially suppressed ~e—""%, i.e. a new length scale

~1/ \/_ ¥ is generated by the coupling to the environment

[9]. System (ii) has been studied by renormalization group
(RG) methods [9,15] finding M*~R" with a small p, a
Monte Carlo (MC) numerical method gave [13] p = 1.8,
while a variational scheme [14] gave p = 0. System (iii)
was also studied within the variational scheme'®, leading
to u =0 as well.

In the present work we use MC methods to analyze
mostly system (ii). We find that the energy cutoff used in a
previous study [13] is insufficient and a higher cutoff

o, is needed. The low T data shows a quantum critical
point at R, at which 1/MR? =@, For all R we find that M*
is R independent, i.e. p = 0. At R > R, we find M* > M
and that even the finite T data (at T <w, ) is determined by
this M*; at R <R, we find M* = M.

The approach to T = 0 defines diverging length
scales ~T " with n= 1 and n= 14 in the large and small R
phases, respectively. A related study shows that similar
scales correspond to a dephasing process [16].

The time dependent angular position 6,(t) of a
particle on the ring has in general a winding number m so
that 0,,(t) = O0(t) + 2mmTt where 6(0) = 6(1/T ) has
periodic boundary condition and T is the temperature. In
presence of an external flux ¢ (in units of the flux
quantum Ac/e) the partition sum has the form

~S(m)

7= Zez’”'""jJ.DHe

2
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where the effect of environments, in each of the 3 cases, is
[9,13,14]
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K(z)=sin’z/2; a =R’ (i)
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Case (i) is the CL system where is the coupling to a
harmonic oscillator bath; case (ii) is a charge coupled to a
dirty metal where &z is the Fermi wave vector, / is the
mean free path in the metal, and » = R//; case (iii) is an
electric dipole of strength p coupled to a dirty metal.

We are interested in the effect of the environment on
particle. As a measure of this visibility we consider the
curvature of the Aharonov-Bohm oscillations the visibility
of quantum interference as measured by the

(iii)

1 °F
M (T)R*  o4;

4n0 3

where F = —T InZ. It is useful to consider a free particle
o= 0, for which

M 2 2 —atmit _2m¥
(}M*(T)Jao =2z tzm:m e /;e = f(¢) “4)

where ¢t = 2MR’T . This identifies the thermal length

Ly~ 1/NMT

In the interacting system a high energy cutoff can be
identified by considering t—1’ (corresponding to high
frequencies ®) so that expansion of K., and Fourier
transform yield

S(m)_)ljd_w[MRza)erZﬁ "(0) @] 6(e) [
292m
+(27zm)2[%MR2T+aK"(0)] )

The cutoff @, is identified when the kinetic ~ ®* and~
|@| interaction terms are comparable, i.e.

2ok (0)
w, =22 ©)
MR
This o, replaces a possibly higher environment cutoff,
since significant renormalizations start only below
where the linear || dispersion leads to In® terms in
perturbation theory and to the need for either RG
treatment, or an equivalent variational scheme'®. Note that
K"(0) = 122 ; r*; 3% in the 3 models above, hence
. = 7y/M in case (i), while o, ~o</M/ in cases (ii)
and (iii).

2. Monte Carlo simulations

For the MC numerical method we need to discretize
the time axis into a Trotter number Nt of segments, i.e. the
time interval of each segment is At=1/(TNy ). The discrete
action is

1

§m = E[MRZNT +aK"(0)]>(6,, 6, + 2

)2

T

N arn’ ZK(Hn -0, +2mm(n—n")/ N,
N; = sin*(z(n—n'")/ N,

(7

The 12aK"(0) term comes from the n = n’ interaction
term by expanding K(z) around z = 0. A key issue in our
MC study is the choice of energy cutoff 1/At and the
corresponding Trotter number Nt = 1/(TAt). The correct
choice is such that the free kinetic term dominates over the
single n = n' interaction term, ie. Np >@/T; this
corresponds to an energy cutoff of ., as anticipated
above. A previous MC study on the charge problem'® has
chosen Nt = 2/(MR?T ), i.e. an energy cutoff of =~ 1/MR”.
For large r this cutoff is much smaller than ®. and is
therefore insufficient. Eqs. (1,3) identify 1/M*(T )R? =
21°T (m%)|¢=0 so that the MC evaluates the fluctuations
in winding number (m®) at external flux ¢ = 0. The
procedure is to start with some m, update 6, at a time
position n to 6," and accept or reject the change according
to the MC rule with probability exp[S™{0,}—S™{0",}].
After the Ny points are successively updated, the winding
number is shifted to m" = m %1 and the shift is accepted or
rejected with the probability exp[S™{0,} — S™{0,}].

An update of 0, is done randomly with a step size that
produces an acceptance ratio of about 50%"".

A. CL model

We start to present our data by showing in Fig. 1 the
dependence of M/M* on the number of iterations for the
CL model with t = 0.01, y = 0.5. To estimate errors we
evaluate the correlation function between different paths
for a given run and deduce a correlation length & We
discard the initial 105 MC iterations and then evaluate the
standard deviation o of the average data; the error is then'’

6+/2& + 1. The reason for large errors shown in Fig. 1

and the necessity to discard a very large number of initial
iterations is a huge correlation length (typically, a few
thousand units), and we, therefore, need a few millions of
iterations in order to decrease the standard deviation of the
average data. We have checked a few points of the CL
model at low temperatures for different y and found a
good agreement with the results presented in''.

Extrapolation to zero temperature for the CL model
with y= 0.5 is shown in Fig. 2.
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B. A charged particle coupled with a dirty metal

We now present results for the main subject of our
research: a charged particle coupled with a dirty metal.

The inset in Fig. 3 shows the N dependence of M/M*
for the charge problem with »=15,¢=0.2, a=0.019.

The choice”® Ny = 2/MR’T ) = 0.8 is clearly
insufficient; saturation sets in around N7 = 100 which is of
order of /T = 30. In the following we choose our N7, in
the charge problem, to be N= 400/t =10w./(nT ), i.e. Nt
= 95 for the inset parameters. For the dipole case, where
o, is 3 times higher we choose

Nr= 12001/t = 10w, /(=T ). Fig. 3 shows that for » =
5,t=10.2, o = 0.02 (red squares) saturation indeed sets in
near Ny = 300.

This high value of NT restricts realistic MC studies.
We have noticed, however, that this high Ny is necessary
only in the vicinity of » = n' in the double sum of (7),
where the summand is rapidly varying. Hence the double
sum is taken over all points only in vicinity of the
singularity, i.e. for [n —n'| < 0.03N7.

For points that are further separated we coarse grain
the sum with fewer points, corresponding to an effective
N, T= 1/t.
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Fig. 1. Dependence of the effective mass on the number of
iteractions for CL model with t=0.01 , y=0.5

The results of this procedure are shown by the green
circles in Fig. 3, and are in agreement with the full
calculation that includes all NT points.
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Fig. 2. Extapolation to zero temperature for the CL model with
7=0.5.
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Fig. 3. Trotter number dependence of the effective mass

for the dipole case with r = 5, t = 0.2, a= 0.02, using (i)

all Nt points in the double sum Eq. (7) — red squares, (ii)

For points |n — n'| > 0.03Ny sum is coarse grained (see

text) — green circles, (iii) the whole sum is coarse grained

— blue triangles. Inset: The charge case with r =35,
t=0.2, a=0.019 using all Nypoints in the ums

The double sum has then = 1/2 10°N%; + 1/2 t72
terms, much less then the 1/2N2T terms of the full
calculation. We also show data where the double sum is
coarse grained at all points, including those near n = n’, by
blue triangles. Here the double sum has only 1/2 t * terms;
this data has significant deviations from the full
calculation. Before we present main results of this
research, we wish to stress that there are two independent
large parameters in the MC procedure: a Trotter number
NT and a number of iterations; the convergence of the
results should therefore be checked separately for each of
those two parameters.

We proceed to present our results on M/M*(T ). At
low temperatures we evaluate (m°), and the average
involves typically many values of m. To estimate errors
we evaluate the correlation function for a given run and
deduce a correlation length & We discard the initial 10*
MC iterations and then evaluate the standard deviation o

of the average data; the error is then'” 6 /2& + 1.

We typically find a short correlation length of a few
units and we run till an error of ~ 2% 1is achieved; the
number of iterations is then =~ (1 — 2) - 10°, where each
iteration is an update of Ny values of the 0,. At high
temperatures t > 1, where M/M*< 1073, the probability of
m# 0 becomes extremely small so that just m = =l
determine the outcome''. Hence we evaluate (m’) =
2(e S =S )o, averaging with e SO. In this method we
find a rather long correlation length of 10°, yet there is no
need to vary m and a 2% accuracy can be achieved after
~(1—2) -10° iterations.
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Fig. 4. AB curvature as function of reduced temperature
with a= 0.019. All r 2 3 values fit the renormalized form
0.9f(t/0.9) — the lower curve. At r < 1 the data
approaches f(t) of a free particles — the upper curve.

In Fig.4 we show our data at low temperatures, ¢ <
0.3. We discuss first the data for » > 3, where we observe
saturation at M/M* = 0.9, independent of 7. The possible
dependence of M*(r) at T = 0 of interest as a means of
monitoring anomalies in the ground state”'®. Previous
studies proposed M*~r* with either >'* a small p or> p
=1.8 for ar> 1 or'* = 0. Our MC is consistent with the pt
= 0 prediction'®, though the numerics cannot exclude a
small p <0.05. The p = 0 result shows that the AB
curvature ~ 1/r” is the same as for free particles, i.e. the
ground state has no anomaly and is fully described by an r
independent M*. Furthermore, Fig. 4 shows that M*[]
determines the finite temperature behavior, as long as T <
.. Thus if we replace M—M*= M/0.9 in Eq. (4) we
obtain the lower curve 0.9/(#/0.9) in Fig. 2 which j d
fit to the data. The thermal length is then Li~1 VM *T .
We turn now to discuss the r < 1 data in Fig. 4. We find
here that the data at low t saturates at M* =M, i.e. no
renormalization at all. The transition from M*= M/0.9 to
M* = M at low T is at r, = 2. We propose that this
transition occurs when the free particle level ing
12MR*is comparable with o, leading to r, = 1/V/47wa =
2. At r < r. the bath is not effective in coupling excited
states of the particle and an approach to M*=M is
expected. However, the sharp transition between the two
regimes is surprising.
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Fig. 5. AB curvature including high temperatures with
a=0.019. All data fall in between the upper line f(t) and
the lower line 0.9/(1/0.9).

In Fig. 5 we show our r > 3 data up to t=2. The data
falls in between two lines: 0.9/(#/0.9) and f(?). The lower
curve 0.9f{#/0.9) corresponds to the renormalized system

and fits data with T << @, i.e. t << 4nor’. For a fixed ¢

as r decreases T approaches o, and the data approaches the
upper curve which is the unrenormalized free particle form
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Fig. 6. Scaling of the x variable in M/M*= f{tx)/x. Note
the distinct scaling forms of the large and small r phases.

We therefore parameterize our data by a function x(7,
¢) such that M/M* =f{tx)/x. In the r > rc phase we expect
x(r, t) to vary between x = 1 at high t and

x = 1/0.9 at low ¢, while for » < r. we expect the
opposite trend as t varies. Fig. 6 shows that x(7, ¢) has a
scaling form that is markedly distinct in the two phases.

In the » > 7, phase the scaling variable is ## while in
the in the < r, it is 7°¢. The scaling for r > r.. is consistent
with a high ¢ expansion" that yields x = 1 + 4ar/(nt),
though we have not tested scaling with a. Temperature
affects both renormalizations: due to the bath, controlled
by T/w., and due to the free particle spectra, controlled by
= 2MR’T via Eq.4). To focus on the bath
renormalization, it is useful to study scaling of r with t
fixed, rather than with 7 fixed. In both phases, increasing r
at a fixed ¢ leads to a larger M[1*, which is expected since
more degrees of freedom become coupled. However, since
the scaling variables are #7 and 7t in the two phases, a
remarkable result follows that the ¢ dependence is
opposite. In particular, at 7 = 0 the renormalization
parameter x is maximal for » > r. while it is minimal (x =
1) for r < r.. We can interpret 7. as an unstable fixed point,
with RG flow for » > r. to r — o leading to fully
renormalized M*, while for

r < r. the flow is to r — 0 leading to an
unrenormalized M* = M at T = 0. Recalling that ¢ =
2MR’T , we conclude that the data shows length scales

1
ry~T "with n= 1 and n= Z in the large and small r

phases, respectively. At scales » > ry the system
approaches its 7= 0 fixed point, which depends on the
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initial 7. Similar length scales, with the same exponents as
above, were recently identified as dephasing lengths'®.

C. Adipole coupled with a dirty metal

Finally, we present preliminary data for a third model:
a particle wih an electric dipole coupled with a dirty metal
environment. As has been mentioned above we need a
Trotter number Ny 3 times higher than for a corresponding
value of o in a charged particle case(see

Fig. 3). Fig. 7 represents results for large R and low
temperatures for a model with a= 0.02. It shows an R
independent saturation of M* > M as in a charged particle
case.
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01
t
Fig. 7. Dependence of the effective mass on the

temperature for a dipole model with a= 0.02.

3. Conclusion

We summarize but noting that we have found out the
reason for large errors in the CL model: a huge correlation
radius for successive paths makes it necessary to use a
very large number of iterations. For a charged particle
model Iwe have found an unexpected phase transition
between two phases of model (ii) with distinct T
dependence and renormalization properties. In both phases
the ground state corresponds to an R independent M*
while the approach to this ground state is via distinct
scaling laws. We have identified the exponents for the

1
length scales as ~7" with n = 1 and 1= Z in the two

phases. We have also found that in both phases there
appears a thermal length with a critical exponent n= 1/2,
which is the remainder of the free particle behavior. We
speculate that this last exponent can account for the
experimental data observed in’. More data for larger
values of the coupling constant a is necessary in order to
clarify dependence of the critical radius r.. As for a dipole

model, our preliminary results resemble the corresponding
results for a charged particle model.
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